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Abstract-A rigid ellipsoidal inclusion is embedded in a homogeneous piezoelectric matrix and is
rotated infinitesimally, about an axis through its center, by an imposed couple. Without having to
solve the governing equations of equilibrium, we find directly the relation between the couple and
rotation vectors, together with the stress, strain, rotation tensor, and electric fields just outside the
ellipsoidal surface. In addition, we establish boundary integral formulae for evaluation of the fields
in the matrix. Gaussian quadrature formulae with variable station points are employed in the
numerical computations. Results are presented for a piezoelectric ceramic PZT-68 to show the effect
of the aspect ratio of the spheroid on the rotational stiffness. This work extends the results of
Walpole (Proc. R. Soc. London A433, 179-207, 1991) to piezoelectric media.

1. INTRODUCTION

Walpole (1991) recently considered the problem of a rotated rigid ellipsoidal inclusion in
an unbounded homogeneous elastic medium using a simple and general "singularity"
representation for the elastic fields. Without having to solve either the governing equations
of equilibrium in the matrix or the fundamental one of a point force, he was able to find
the relation between the couple and rotation vectors, and the components of stress, strain
and rotation at points just outside the inclusion. The objective of this work is to extend
Walpole's approach to piezoelectric media.

Piezoelectric materials exhibit coupling behavior between mechanical and electric fields
and are inherently anisotropic. Exact solutions of boundary value problems in such media
are rather scarce in the literature. We consider a rigid ellipsoidal inclusion embedded in a
homogeneous, arbitrarily anisotropic, piezoelectric matrix and rotated infinitesimally, about
an axis through its center, by an imposed couple. The term "rigid" is defined here in the
sense that its stiffness and dielectric permittivity tend to infinity so that no elastic strain or
electric field is present in the inclusion. The approach is to let the homogeneous piezoelectric
medium extend throughout the whole space. A layer of body force and charge is introduced
over the ellipsoidal surface at a density that has the constant linear combinations of the
outward unit normal. By a suitable choice of one first- and two second-rank coefficients,
we reproduce a uniform rotation tensor to the interior, but not accompanied by any strain
or electric field, while the exterior elastic and electric fields are identical to those associated
with the rotated rigid inclusion. The concept is close to that devised by Eshelby (1957) and
the formulation is related to the subject of interfacial discontinuities (Hill, 1983; Chen,
1993a). We find directly the relation between the couple and rotation vectors, together with
the stress, strain, rotation, electric field and electric displacement just outside the inclusion.
Moreover, we establish boundary integral formulae for evaluation ofthe fields in the matrix.
In the case of a uniform strain and/or a uniform intensity applied at infinity, we can
superimpose uniform fields of strain and intensity in the medium to obtain solutions. The
results are expressed in a closed form and are evaluated numerically without regard to the
anisotropy ofthe medium or to the ellipticity of the inclusion. Gaussian quadrature formulae
with a variable number ofintegration points are employed in the calculations. The computer
routines have been checked with existing analytic solutions for purely elastic cases. As an
illustration, we present results for a piezoelectric ceramic PZT-6B to show the effect of the
aspect ratio of the spheroid on the rotational stiffness.
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Available solutions of problems of this kind in elasticity can be found in the papers by
Kanwal and Sharma (1976), Selvadurai (1980,1984), and Zureick and Choi (1989). Kanwal
and Sharma applied the singularity method to obtain the displacement field for a general
rotation and translation of a rigid prolate or oblate spheroidal inclusion in an isotropic
matrix. Selvadurai employed the Hankel integral transform to investigate the asymmetric
displacement of a rigid elliptical disc in a transversely isotropic medium. Zureick and Choi
studied the rotation of a rigid spheroidal inclusion embedded in a transversely isotropic
medium using the displacement potential method.

We start with a review of basic equations in Section 2. The essence of the method is
decribed in Section 3 through the formulation of an ellipsoidal layer of body force and
charge in an unbounded piezoelectric medium. We prove some related theorems in Section
4 with the help of reciprocal relations and establish our main results in Section 5. Finally,
numerical results are presented in Section 6. Cartesian tensors will be used and their
components will be written by the indicial notation, with reference to the coordinates
XbX2,X3' Repeated indices indicate Einstein's summation convention with the index run­
ning from 1 to 3. i is the unit second-rank tensor 0;1 such that (%(%_0' = (%00

1
(% = i, provided

that (% is invertible.

2. BASIC EQUATIONS

The constitutive relation for a linear piezoelectric medium can be expressed as (Tiersten,
1969):

{

(J1j = Lljklekl-ekljEb

D; = e;klekl +K;kEb
(I)

where (J1j is the stress tensor, e;j the strain tensor, D; the electric displacement vector, and E;
the electric intensity. Lljkl are the elastic moduli measured in a constant electric field; KIj are
the dielectric permittivities measured at constant strain; eljk are the piezoelectric constants.
The material constants L, e, K are, respectively, fourth-rank, third-rank, and second-rank
tensors, which satisfy the symmetry relations:

(2)

so that Lljkl' eljk and KIj admit, at most, 21, 18 and 6 independent components, respectively.
If u;(x) is the elastic displacement vector and ¢(x) the electric potential, the infinitesimal
strain, rotation tensor and electric field are given by

(3)

where the comma followed by an index indicates the derivative with respect to the cor­
responding space coordinate. The stress and electric displacement should satisfy the diver­
gence equations

(Ji/.j = 0, D;.; = 0,

where the body forces and the extrinsic charges are neglected.

(4)

3. AN ELLIPSOIDAL LAYER OF BODY FORCE AND CHARGE

An unbounded volume of a homogeneous piezoelectric medium is loaded by a layer
of body force and charge over a closed surface S. At the remote boundary of the matrix
the strain and electric field are zero. The resulting displacement field and electric potential
are hence continuous across S and continuously differentiable elsewhere. The interfacial
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jumps in the surface traction and charge are specified at a density that has constant linear
combinations of the components of the outward unit normal n on S, that is

(5)

in which the general unsymmetric set of constant second-rank coefficients is separated into
symmetric and antisymmetric parts, i.e. t;j = tj;, 1:;j = -1:j;' The superscripts I and E,
respc;:ctively, refer to the interior and exterior parts of S. Since there is no body force or
charge elsewhere, the equilibrium conditions (4) are satisfied at points inside and ouside S.
The resultant force, couple and charge due to the point layer of force and charge could be
evaluated by the surface integrals

by appeal to the divergence theorem, where V is the volume enclosed by Sand £;jk is the
permutation symbol. Equation (6) indicates that the resultant force and charge are zero,
but the couple is generally not.

To find the jump relations on both sides of S, we start with the Hadamard's geometric
interpretation for the displacement gradient and electric field (Hill, 1961)

ul ._U;E = !'.n.
l,j .J ~J l'

Substituting (7) into (1) we obtain

«(j:j-(j~)nj = Cik~k+dih,

(D: -Dr>ni = d;~i-ph,

where

(7)

(8)

(9)

The tensor ~; and scalar h are some unknowns that could be determined from (5) and (8)
as:

(10)

where k;j= (cij+(l/p)d;dj)-l. By some tensorial algebra it can also be shown that k;j is
equivalent to

(11)

Substituting (10) into (7) and taking the symmetric and antisymmetric parts in (7.), we find
the jump relations

e:j-e~ = 9 ijk/tkl +9t;jkl1:kl+9'ijkQb

ro:j-ro~ = 9tklij t;I+.P2;jkl1:kl+!iijkQb
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(12)

for the strain, rotation and electric fields at points of S, where the tensorial coefficients are
of the form

[JJ>;;kl = i(kiknjn,+ki/njnk+k;kn,nl+kjlnind,

}2;;kl = l(kiknjn,-ki/njnk-k;kn,nl+kj,nind,

.iJllijkl = i(kikn;n,-ki/njnk+k;kn,nl-kjlnind,

Since kit is symmetric these operators satisfy the conditions

[JJ>;;kl = [JJ>j'kl = [JJ>i/lk = [JJ>kli;, }2'jkl = - }2jikl = - :!2ijlk =:!2klij,

~ijkl = .iJll;ikl = -.iJll'jlb .9'fjk = Yj'b 'O/;;k = -:Yjik' rJl1;; = {Iii/i'

(13)

(14)

In the next section we shall show that if S is an ellipsoidal shape, the strain, rotation
tensor and electric field are uniform inside the ellipsoid, and the following integrals vanish
over S

( watdS = 0,
J~

( ww~dS = 0,J, IwEFdS = 0, (15)

where the weighting function w(x) is the perpendicular distance from the origin to the
tangent plane of the ellipsoid at each point, namely w = xrnr.

Now multiply both sides of (12) by w(x) and integrate over the elIipsoidal surface S;
by use of (15) we obtain the interior uniform strain, rotation and electric fields as

at = Pijkltkl + Ri/klTkl + S;;kqb

w); = Rkli; tkl + Q;;klTkl + T;;kqb

El = SklJkl+ TkliTkl+ Uikqb

where

( 16)

(17)

and where GJ, Gz and G3 are the semi-axes of the ellipsoidal surface S.



Rotation of a rigid inclusion 1987

4. AN ELLIPSOIDAL VOLUME DISTRIBUTION OF BODY FORCE AND CHARGE

We shall show in this section that the elastic strain, rotation tensor and electric field
are uniform inside the ellipsoidal region under an ellipsoidal layer of body force and charge
as described in Section 3. To prove this, we employ the approach of Green's function.
Similar to that of elasticity, Green's functions in piezoelectric media can be defined as [see
for example, Minagawa (1984)]:

(18)

where bij is the Kronecker delta and b(X-X') the Dirac delta function. gi}(X-X') and
gJ(x-x') are, respectively, defined to be the elastic displacement in the i direction and
electric potential at x due to a point force applied at x' in the xj direction; likewise gl and
g4 are, respectively, the displacement in the i direction and electric potential at x due to a
point charge at x'.

Now consider a uniform distribution of body force and charge acting on the region
inside a closed surface S. The corresponding equations for the displacement and electric
potential can be written as

where

(19)

{
I,

l(x) = 0,
XEV

otherwise.
(20)

To establish the relation between the tensors G and g, we introduce the following
reciprocal relation

(21)

This equation is valid for the entire medium due to the diagonal symmetry of the moduli
and the bracketed terms are placed to indicate the components of stress and electric
displacement. Integrating (21) over the interior and exterior ofS by appeal to the divergence
theorem and to the equilibrium equations, one can find the functions G as
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G;j(x) = Lg};(X',X)dX" G 4 (X) = Lg 4(X"X)dX"

Gl(x) = G/(X) = Lgl(x', X) dx' = Lgf(x', X) dx'. (22)

It should be noted that, similar to that ofelasticity, the Green functions of piezoelectric
media possess the decomposition (Chen, 1993b)

g = g(S)/lx-x'l, S; = (x;-x;)/lx-x'l, (23)

where gare even functions of S. With this property one can show that the volume integrations
(22) are simply quadratic functions of the coordinates

G/j = HJi~-K;jk/XkX,), Gl = 1(Jl-K/~/XkX/),

Gf = 1(Jf -K~/XkX/), G4 = 1(J4 -K:,XkX/), (24)

for points interior to S, where J and K are some constant tensorial coefficients. At points
far away from the region V the tensors G are asymptotically of the order r-- I. It is also
obvious that these coefficients possess the symmetry properties

(25)

Since there are no discontinuities in the displacement, potential, traction or in the electric
displacement across the surface S, it may be inferred that the functions G and their first
derivatives are continuous. However, their second derivatives may have the jumps (Hill,
1961)

(26)

l, IX, fJ and y being some tensors and a scalar. In accordance with (19), multiplying (26) by
two suitable members of L, e, or K and subtracting these two equations, we can solve for
the unknowns as

(27)

We shall show in the Appendix that the weighted averages of the surface integrals
vanish

(28)

Hence the immediate connections from (24), (26-28) are
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KI)kt = (fWkunkntdS)/(fwdS),

K~t = Kit = (fwtkUdjnknldS)/(fw dS)'
Kt = (fw1[tkmndmdn-l ]nlnjds)/(fwdS).

1989

(29)

Now returning to the problem of an ellipsoidal layer of body force and charge (5), the
full elastic and electric fields can be constructed from the Green function (18) by appeal to
the reciprocal relation (21) as

Ui = L(tjk+Tjk)nkg]i dS - L(qknk)ifdS,

4J = L(tjk+Tjk)nkg]dS-L(qknk)g4dS. (30)

It is convenient to convert the integration into the interior volume by use of the divergence
theorem

U· = --2It'k(GI'k+Glk ·)--21.·k(G.Ik-G·kl ·)+qkG2kI J J), I ,} J Il, I ,j I, ,

4J = - -!tjk(G],k +Gi,;) - hjk(G],k - G],;) +qkG,i. (31)

Since GI), Gr, G; and G4 are quadratic functions of XI inside the ellipsoid, the interior
strain elj, rotation wlj and electric field El are then constant. We thus complete the proof.
In addition, eqn (16) is recovered again by substituting (31) and (29) into (3).

5. A ROTATED RIGID ELLIPSOIDAL INCLUSION

Consider a rigid ellipsoidal inclusion firmly embedded in an infinte piezoelectric
medium and subjected to a prescribed couple or a rotation vector about an axis through
its center. The term "rigid" is defined here in the sense that its stiffness and dielectric
permittivity tend to infinity so that no elastic strain or electric field is present in the inclusion.
We intend to reproduce the response ofa rotated rigid inclusion by prescribing an ellipsoidal
layer of body force and charge as stated in Section 3. Physically, in the rotated rigid
inclusion, the elastic strain and electric field are vanishing, and the rotation tensor is
constant. To find the unknown coefficients ti}' Tlj and ql, we first invert eqn (16) as

tlj = Ptklekl+RtkIWkl+StkEL

.Ij = Rfli}ekl+Qtklwll+TtkEk,

ql = Sftlelt+ Tfu wlt+ U?kEL

and consequently obtain the results as

Accordingly the displacement and potential have the components

(32)

(33)
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(34)

at interior and immediate exterior of S, where the corresponding axial rotation vector n:
is of the form

(35)

Now the interior and exterior fields of displacement, potential, strain and electric field, and
the exterior field of stress and electric displacement are exactly identical to those associated
with the rotated rigid ellipsoid. Since a:j vanishes in the replacement configuration, the
resultant couple can be evaluated by the surface integration over S with the help of (5) and
(6)

(36)

in which

(37)

Thus for a prescribed couple r j we can readily determine the rotation tensor wlj and hence
the quantities tij , !ij and qi' The matrix interfacial quantities can be derived as

e~ = -f!Jijkltkl-fJliijkl!kl-!/ijkqb

w~ = w)i - fJliklii tkl - f!2ijk/!kl-:!iijk qb

E~ = -,Cf!clitkl-3kIi!kl-iJI!;kqb (38)

and hence the corresponding stress and electric displacement.
In the case of a uniform strain and electric field applied at infinity, we superimpose

uniform fields of strain I'D, rotation wD, and intensity E~ (and hence stress aD and electric
displacement D~) in the unbounded homogeneous medium. Now stipulating

to eliminate the interior strain and intensity, we find the unknown coefficients as

tij = -Ptklet+Rtkl(W~/-wt)-StkE~,

1:ij = -Rtliiet+Qtkl(W~/-wt)-TtkEt,

qi = -stliet+ TMw~/-wt)-U1E~,

(39)

(40)

where w~ is the total interior rotation tensor externally imposed or induced from the applied
couple n. By means of the surface integration analogous to (36), we find the couple­
rotation relationship for the inclusion

(41)

The interfacial quantities on the matrix side are thus

e~ = -eD -f!Jijkl tkl- fJli jjkl1:kl-Yfikqb

w~ = -wD+W~-fJlik/ijtkl-f!2ijkl!kl-:!iijkqb
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(42)

and hence one can derive the stress and electric displacement.
We have now obtained the interfacial quantities just outside the inclusion. With this

information we shall further pursue the fields at points inside the matrix. Specifically, the
problem can be treated as an infinite piezoelectric medium with an ellipsoidal cavity inside.
On its surface the stress, strain, electric field and electric displacements are all given, while
at its remote boundary the strain and electric fields are either zero or uniform. Our objective
is to derive some formulae for evaluation of the fields in the matrix. Due to the symmetric
nature of Lijkl = Lklij and Kij = Kjj we can establish the following reciprocal relation

Now invoking the divergence theorem and recalling the definition ofGreen's function, after
some reduction we can show that

up(x) = 8~mXm+L([ijnjgj~dS+LDjnjg;dS-LUj(Lijklglp,l+ekijg;,k)njdS

-L¢(e/k/glp,l- K/kg;,k)ni dS, (44)

where the boundary terms at infinity are reduced to the first member on the right-hand side
of (44). Analogous to (43), we can also write the reciprocal relation

and consequently establish that

¢(x) = ¢~xm + L([ijnjgl dS+LDjnig 4 dS-LUj(Liwgi,/+ekijg,k)njdS

-L¢(e,'klgi,I-K/kgi)ni dS. (46)

We mention that a numerical evaluation procedure for the Green's functions and their first
derivatives are outlined by Chen (1993b). Since all field variables on S are known, eqns
(44) and (46) are readily amena.ble to numerical computations. In the context of elasticity
the corresponding formula for (44) and (46) is the well-known Somigliana identity (Love,
1944) which constitutes the basic formulation in the direct method of boundary element.

6. NUMERICAL RESULTS

As seen from the previous section it is obvious that the solutions rely on the evaluations
of the integrals (17). Unfortunately, for arbitrary anisotropy of the medium and for
arbitrary ellipticity of the inclusion it is not generally possible to obtain the results analyti­
cally. Thus we shall carry out the integrations numerically in terms of Gaussian double
quadratures. In order to do this, the integrals (17) are first parameterized on the surface of
a unit sphere following a coordinate transformation described in Mura (1987). For example,
the tensor Pijkl (171) can be written as
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k'k = k'k(!;)' !;; = (;fa;, (no sum on 0,
(I = (1_(DI/2COSW, (2 = (1-(D I12 sinw,

(47)

(48)

and similarly for Q, R and others. The double integration (47) can be computed using the
Gaussian quadrature formula

where !;, = !;,(wq, (3p), M and N refer to the Gaussian points used for the integration over
(3 and w, respectively, and Wpq are the Gaussian weights. The constants M and N are
variable numbers depending on the aspect ratio of the ellipsoid, material constants, and
the desired accuracy. We mention the work of Ghahremani (1977) who used a different
parameterization of the unit sphere for evaluations of P tensor in elasticity.

In order to perform the numerical inverse (32), it is convenient to write (16) in a matrix
notation. This can be achieved by using the following convention: replace the first two
suffixes by a single one and/or the last two in the same way according to the following rule

ij or kl II 22 33 23,32 31,13 12,21

m or 11 I 2 3 4 5 6

for the stress and strain, and

ij or kl 32 13 21

s or t I 2 3

(50)

(51)

for the antisymmetric tensors, and w. Accordingly eqn (16) can be written in the form:

where

e' = Pt+Rr+Sq,

Wi = RTt+QT+Tq,

E ' = STt+TTT+Uq,

(fm = (fu form = 1-6;i,j= 1,2,3,
em = eli for i = j, m = 1,2,3; em = 2eu for i i= j, m = 4, 5, 6,

2W32 = W b 2WI3 = W2, 2W21 = W3, '32 = 'I, "3 = '2, 2'21 = '3,
P'jkl = Pmn when m and 11 are 1,2, or 3,

2Pijkl = Pmn when either m or 11 are 4, 5, 6,
4Pijkl = Pmn when both m and 11 are 4, 5, 6,
4Qijkl = QSI where sand t are I, 2, 3,
2Rukl = Rms whel1 m is I, 2, 3; 4Rukl = Rms when m is 4, 5, 6,

Sijk = Smk when m is 1, 2, 3 ; 2Siik = Smk when m is 4, 5, 6,
2Tijk = T,.k where s is 1,2,3.

(52)

(53)
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Table I. Rotational stiffness for various aspect ratios (isotropic,
v = 0.25)

1993

O.oI
0.1
0.2
0.4
0.6
0.8
1.0
2.0
4.0
8.0

10.0
100.0

96.23
10.39
5.734
3.589
3.055
2.937
3.000
4.324
9.079

23.87
33.54

1649.0

128.9
14.36
8.015
4.856
3.815
3.302
3.000
2.420
2.163
2.058
2.041
2.000

M

600
50
32
16
8
6
2

10
22
38
56

420

N

8
8
8
8
8
8
8
8
8
8
8
8

Table 2. Material properties of a piezoelectric ceramic PZT-6B

Elastic stiffness
(1010 N m- 2)

c••

Piezoelectric coefficients
(C m- 2)

Dielectric
constants

(1O- IO Fm-')

16.8 16.3 2.71 6.0 6.0 -0.9 7.1 4.6 36 34

Table 3. Rotational stiffness for various aspect ratios (PZT-6B)

alIa, bTl (1010 N m- 2
) b~3 (lO'ONm- 2) M N

O.oI 389.343 495.836 1500 10
0.1 41.2636 57.5714 141 10
0.2 22.3568 33.3152 67 10
0.4 13.6520 21.3031 53 10
0.6 11.5055 17.3789 22 8
0.8 11.0816 15.4621 15 8
1.0 11.4123 14.3403 11 8
2.0 17.5450 12.2315 27 8
4.0 39.8942 11.3340 54 9
6.0 71.5111 11.0894 84 9
8.0 111.228 10.9847 113 9

10.0 158.511 10.9294 125 9
100.0 8358.66 10.8025 1300 9

The tensors P, R, S, Q, T and U are then represented by (6 x 6), (6 x 3), (6 x 3), (3 x 3),
(3 x 3) and (3 x 3) matrices, respectively. The inverse of (52) is then expressed as

t = P*£I+R*wI+S*E1,

't" = R*T£I+Q*wI+T*E1
,

q = S*T£I+T*TWI+U*E\

or equivalently as an indicial notation (32), where the correspondence is

Ptkl=P:mfori,j,k,l= 1,2,3;m,n= 1-6,

Qtkl = Q:; for s, t = 1,2,3,

Rtkl = R:' t for m = 1--6; t = 1,2,3,

Stk = S:'k for m = 1-6,

Ttk = T:k for s = 1,2,3.

(54)

(55)
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To check the validity of our procedures, we have compared our numerical results with
existing analytic solutions for purely elastic cases. Table 1 lists the rotational stiffness bt
versus the aspect ratio of the spheroid in an isotropic medium. The numbers M and N are
the numbers of integration points necessary to achieve accuracy of four significant digits
of the exact solutions (Walpole, 1991). In addition, we have checked our solutions with the
numerical results tabulated in Zureick and Choi (1989) for transversely isotropic solids
(mica schist and eclogite).

Finally, we present results for a piezoelectric ceramic PZT-6B. The material constants
are recorded in Table 2 (Shindo and Ozawa, 1990); the symmetry corresponds to that of
the hexagonal crystal of class 6 mm (Nye, 1957). The numerical values of the couple~

rotation coefficient are given in Table 3 for both prolate and oblate spheroids. The numbers
M and N are the necessary Gaussian station points to achieve convergence for six significant
digits. This numerical procedure provides an efficient and accurate evaluation of the
rotational stiffness for arbitrary ellipticity of the inclusion and for arbitrary anisotropy of
the medium.
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APPENDIX

Equation (28) will be shown in this appendix. Suppose that an arbitrary elastic displacement Vi and electric
field 4> are established everywhere exterior to a closed surface ~ by some unspecified sources which lie entirely
within ~ in an infinite homogeneous piezoelectric medium. Outside ~, eij and Ei are derived from continuously
differentiable displacement fields Vi and potential 4>, and the accompanying stress and electric displacement satisfy
the equilibrium equations. At the remote boundary, the displacement and potential tend to constant, or even
vanishing, values. In order to prove (15) and (28), we introduce the following integral identity over any ellipsoidal
surface S which surrounds ~

This identity can be verified by utilizing the properties



Rotation of a rigid inclusion

3 3 I 4 4 I (I )
Kkjl = - Gk;jI +pkkmdmnjn" Kj, = - G} +P\p kmndmdn- I njn/,

Ki~jIX/ = -Gi~~j' K~/x/ = -GZj, Kij,x, = -Gi,'j, K;x/ = _G,~E,

on the right-hand side of (AI), This leads to

1995

(A2)

-eqkm][~p.q ]nmdS. (A3)
Kmq 4>.q

Now making use of the divergence theorem and equilibrium equations by converting them into volume integrals
exterior to S, it is readily seen that the first and third members of (A3) cancel each other out. This completes the
proof ofeqn (AI). Next consider another ellipsoid V' enclosed by surface S' which is concentric and has the same
shape and orientation with V, but has a larger size, V c V'. We can integrate the surface integral (AI) over the
surfaces Sand S' together, as they have the common coefficient K. Applying the divergence theorem again on the
terms inside the curly bracket of (AI), it can be shown that they all reduce to a column vector with components
of stress and electric displacement, and consequently cancel each other out. Thus

r [Vi.j] dV = o.Jv'-v 4>.j
(A4)

(AS)

Letting V indefinitely approach V', the volume integral of the ellipsoidal homoeoid V' - V can be transformed
into a surface integral by a known result (Walpole, 1977)

rW[Vi.J
] dS = o.Js 4>,J

Now identifying Vi with Gi~~/ and 4>./ with Gl.I and similarly for two others, we arrive at the results of (28). Also,
this conclusion can be applicable to (IS).


